Volume 4, Issue 2 (May 2017)                   Avicenna J Neuro Psycho Physiology 2017, 4(2): 65-70 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

D. Ionova I, I. Pushinskaya I. Cyclosomatostatin-Induced Catalepsy in the Aged Wistar Rats: Inhibition by Nicotine. Avicenna J Neuro Psycho Physiology. 2017; 4 (2) :65-70
URL: http://ajnpp.umsha.ac.ir/article-1-103-en.html
1- Centre on Theoretical Problems in Physical and Chemical Pharmacology, Russian Academy of Sciences, Moscow, Russia. , newrology@yandex.ru
2- Timpharm LTD, Moscow, Russia.
Abstract:   (165 Views)
Background: Recently, it has been found that Cyclosomatostatin (CSST) induces Catalepsy, a State Similar to extrapyramidal dysfunctions in Parkinson disease. The sensitivity of CSST-induced catalepsy to clinically effective antiparkinsonian agents is unknown. Epidemiological studies have documented an inverse association between parkinsonism and tobacco smoking that suggests an antiparkinsonian activity of nicotine. To evaluate the similarity between human illness and CSST-induced catalepsy, we studied the sensitivity of this model to nicotine.
Materials and Methods: The experiments were conducted on 27- to 28-month-old male Wistar rats. To determine the cataleptogenic doses of CSST, this drug (0.5, 2, and 10 µg) was injected intracerebroventricularly. Nicotine (0.1, 0.4, and 1 mg/kg) was given subcutaneously. Catalepsy was defined as an increased period of immobility in the bar test. All groups consisted of 8 animals.
Results: CSST (10 µg) increased period of immobility compared with the controls (P<0.01). Nicotine (0.4 and 1 mg/kg) inhibited this effect (P<0.05).
Conclusion: CSST-induced catalepsy in Wistar rats can be reduced by nicotine. These data support the validity of this behavioral response as a model of human extrapyramidal dysfunctions.
Full-Text [PDF 700 kb]   (33 Downloads) |   |   Full-Text (HTML)  (28 Views)  
Article Type: Research Article | Subject: Special
Received: 2016/07/10 | Accepted: 2016/12/5 | Published: 2017/05/1

References
1. Hornykiewicz O. Biochemical aspects of Parkinson's disease. Neurology. 1998; 51(2 Suppl 2):S2–9. [DOI:10.1212/WNL.51.2_Suppl_2.S2] [PMID] [DOI:10.1212/WNL.51.2_Suppl_2.S2]
2. Thomas B, Beal MF. Parkinson's disease. Human Molecular Genetics. 2007; 16(R2):R183-94. [DOI:10.1093/hmg/ddm159] [DOI:10.1093/hmg/ddm159]
3. Magrinelli F, Picelli A, Tocco P, Federico A, Roncari L, Smania N, et al. Pathophysiology of motor dysfunction in Parkinson's disease as the rationale for drug treatment and rehabilitation. Parkinson's Disease. 2016; 2016:9832839 [DOI:10.1155/2016/9832839] [DOI:10.1155/2016/9832839]
4. Hindle JV. Ageing, neurodegeneration and Parkinson's disease. Age Ageing. 2010; 39(2):156-61. [DOI:10.1093/ageing/afp223] [PMID] [DOI:10.1093/ageing/afp223]
5. Ascherio A, Schwarzschild MA. The epidemiology of Parkinson's disease: Risk factors and prevention. The Lancet Neurology. 2016; 15(12):1257-72. [DOI:10.1016/S1474-4422(16)30230-7] [DOI:10.1016/S1474-4422(16)30230-7]
6. Gubellini P, Kachidian P. Animal models of Parkinson's disease: An updated overview. Revue Neurologique. 2015; 171(11):750-61. [DOI:10.1016/j.neurol.2015.07.011] [PMID] [DOI:10.1016/j.neurol.2015.07.011]
7. Ionov ID, Turgeneva ZA. Histamine potentiates cyclosomatostatin-induced catalepsy in old rats. Avicenna Journal of NeuroPsychoPhysiology. 2015; 2(2):16-9. [DOI:10.17795/ajnpp-31238] [DOI:10.17795/ajnpp-31238]
8. Chesselet MF, Reisine TD. Somatostatin regulates dopamine release in rat striatal slices and cat caudate nuclei. Journal of Neuroscience. 1983; 3(1):232-6. [DOI:10.1523/JNEUROSCI.03-01-00232.1983] [DOI:10.1523/JNEUROSCI.03-01-00232.1983]
9. Hathway GJ, Emson PC, Humphrey PP, Kendrick KM. Somatostatin potently stimulates in vivo striatal dopamine and gamma-aminobutyric acid release by a glutamate-dependent action. Journal of Neurochemistry. 1998; 70(4):1740-9. [DOI:10.1046/j.1471-4159.1998.70041740.x] [PMID] [DOI:10.1046/j.1471-4159.1998.70041740.x]
10. Hathway GJ, Humphrey PP, Kendrick KM. Somatostatin induces striatal dopamine release and contralateral turning behaviour in the mouse. Neuroscience Letters. 2004; 358(2):127-31. [DOI:10.1016/j.neulet.2003.09.056] [PMID] [DOI:10.1016/j.neulet.2003.09.056]
11. Ikeda H, Kotani A, Koshikawa N, Cools AR. Somatostatin receptors in the nucleus accumbens modulate dopamine-dependent but not acetylcholine-dependent turning behaviour of rats. Neuroscience. 2009; 159(3):974-81. [DOI:10.1016/j.neuroscience.2009.01.053] [PMID] [DOI:10.1016/j.neuroscience.2009.01.053]
12. Lee N, Radke JM, Vincent SR. Intra-cerebral cysteamine infusions attenuate the motorresponse to dopaminergic agonists. Behavioural Brain Research. 1988; 29(1-2):179-83. [DOI:10.1016/0166-4328(88)90065-4] [DOI:10.1016/0166-4328(88)90065-4]
13. Ionov ID, Pushinskaya II. Somatostatin antagonist induces catalepsy in the aged rat. Psychopharmacology. 2013; 227(2):273-6. [DOI:10.1007/s00213-012-2961-0] [PMID] [DOI:10.1007/s00213-012-2961-0]
14. Fries JL, Murphy WA, Sueiras-Diaz J, Coy DH. Somatostatin antagonist analog increases GH, insulin, and glucagon release in the rat. Peptides. 1982; 3(5):811-4. [DOI:10.1016/0196-9781(82)90020-1] [DOI:10.1016/0196-9781(82)90020-1]
15. Crocker AD, Hemsley KM. An animal model of extrapyramidal side effects induced by antipsychotic drugs: Relationship with D2 dopamine receptor occupancy. Progress in Neuro-Psychopharmacology & Biological Psychiatry. 2001; 25(3):573-90. [DOI:10.1016/S0278-5846(00)00176-7] [DOI:10.1016/S0278-5846(00)00176-7]
16. Wadenberg ML, Soliman A, VanderSpek SC, Kapur S. Dopamine D2 receptor occupancy is a common mechanism underlying animal models of antipsychotics and their clinical effects. Neuropsychopharmacology. 2001; 25(5):633-41. [DOI:10.1016/S0893-133X(01)00261-5] [DOI:10.1016/S0893-133X(01)00261-5]
17. Duty S, Jenner P. Animal models of Parkinson's disease: A source of novel treatments and clues to the cause of the disease. British Journal of Pharmacology. 2011; 164(4):1357-91. [DOI:10.1111/j.1476-5381.2011.01426.x] [PMID] [PMCID] [DOI:10.1111/j.1476-5381.2011.01426.x]
18. Teng L, Crooks PA, Sonsalla PK, Dwoskin LP. Lobeline and nicotine evoke [3H] overflow from rat striatal slices preloaded with [3H] dopamine: Differential inhibition of synaptosomal and vesicular [3H] dopamine uptake. Journal of Pharmacology and Experimental Therapeutics. 1997; 280(3):1432-44. [PMID] [PMID]
19. Lecca D, Shim I, Costa E, Javaid JI. Striatal application of nicotine, but not of lobeline, attenuates dopamine release in freely moving rats. Neuropharmacology. 2000; 39(1):88-98. [DOI:10.1016/S0028-3908(99)00085-4] [DOI:10.1016/S0028-3908(99)00085-4]
20. Sanberg PR, Emerich DF, Mohamed M, Shipley MT, Zanol MD, Cahill DW, et al. Nicotine potentiation of haloperidol-induced catalepsy: Striatal mechanisms. Pharmacology Biochemistry and Behavior. 1993; 46(2):303-7. [DOI:10.1016/0091-3057(93)90357-Y] [DOI:10.1016/0091-3057(93)90357-Y]
21. Zarrindast MR, Haeri-Zadeh F, Zarghi A, Lahiji P. Nicotine potentiates sulpiride-induced catalepsy in mice. Journal of Psychopharmacology. 1998; 12(3):279-82. [DOI:10.1177/026988119801200308] [PMID] [DOI:10.1177/026988119801200308]
22. Zarrindast MR, Samadi P, Haeri-Rohani A, Moazami N, Shafizadeh M. Nicotine potentiation of morphine-induced catalepsy in mice. Pharmacology Biochemistry and Behavior. 2002; 72(1-2):197-202. [DOI:10.1016/S0091-3057(01)00754-7] [DOI:10.1016/S0091-3057(01)00754-7]
23. Quik M, O'Leary K, Tanner CM. Nicotine and Parkinson's disease: Implications for therapy. Movement Disorders. 2008; 23(12):1641-52. [DOI:10.1002/mds.21900] [PMID] [PMCID] [DOI:10.1002/mds.21900]
24. Behmand RA, Harik SI. Nicotine enhances 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine neurotoxicity. Journal of Neurochemistry. 1992; 58(2):776-9. [DOI:10.1111/j.1471-4159.1992.tb09786.x] [DOI:10.1111/j.1471-4159.1992.tb09786.x]
25. Ooka H, Fujita S, Yoshimoto E. Pituitary-thyroid activity and longevity in neonatally thyroxine-treated rats. Mechanisms of Ageing and Development. 1983; 22(2):113-20. [DOI:10.1016/0047-6374(83)90104-5] [DOI:10.1016/0047-6374(83)90104-5]
26. Klein MC, Gertner SB. Studies on the mechanism of the cardiovascular action of central injections of histamine. Neuropharmacology. 1983; 22(9):1109-15. [DOI:10.1016/0028-3908(83)90032-1] [DOI:10.1016/0028-3908(83)90032-1]
27. Dyr WA, Koros EL, Bienkowski PR, Kostowski WO. Involvement of nicotinic acetylcholine receptors in the regulation of alcohol drinking in Wistar rats. Alcohol and Alcoholism (Oxford, Oxfordshire). 1999; 34(1):43-7. [DOI:10.1093/alcalc/34.1.43] [PMID] [DOI:10.1093/alcalc/34.1.43]
28. de Carvalho CR, Hoeller AA, Franco PL, Martini AP, Soares FM, Lin K, et al. The cannabinoid CB2 receptor-specific agonist AM1241 increases pentylenetetrazole-induced seizure severity in Wistar rats. Epilepsy Research. 2016; 127:160-7. [DOI:10.1016/j.eplepsyres.2016.08.011] [PMID] [DOI:10.1016/j.eplepsyres.2016.08.011]
29. Antunes-Rodrigues J, McCann SM. Water, sodium chloride, and food intake induced by injections of cholinergic and adrenergic drugs into the third ventricle of the rat brain. Proceedings of the Society for Experimental Biology and Medicine. 1970; 133(4):1464-70. [DOI:10.3181/00379727-133-34713] [PMID] [DOI:10.3181/00379727-133-34713]
30. Crofton JT, Rockhold RW, Share L, Wang BC, Horovitz ZP, Manning M, Sawyer WH. Effect of intracerebroventricular captopril on vasopressin and blood pressure in spontaneously hypertensive rats. Hypertension. 1981; 3(6_pt_2):II-71. [DOI:10.1161/01.HYP.3.6_Pt_2.II-71] [DOI:10.1161/01.HYP.3.6_Pt_2.II-71]
31. Erzin-Waters C, Muller P, Seeman P. Catalepsy induced by morphine or haloperidol: Effects of apomorphine and anticholinergic drugs. Canadian Journal of Physiology and Pharmacology. 1976; 54(4):516-9. [DOI:10.1139/y76-071] [PMID] [DOI:10.1139/y76-071]
32. Sanberg PR, Pisa M, Fibiger HC. Kainic acid injections in the striatum alter the cataleptic and locomotor effects of drugs influencing dopaminergic and cholinergic systems. European Journal of Pharmacology. 1981; 74(4):347-57. [DOI:10.1016/0014-2999(81)90054-6] [DOI:10.1016/0014-2999(81)90054-6]
33. Dijk S, Krugers HJ, Korf J. The effect of theophylline and immobilization stress on haloperidol-induced catalepsy and on metabolism in the striatum and hippocampus, studied with lactography. Neuropharmacology. 1991; 30(5):469-73. [DOI:10.1016/0028-3908(91)90008-Y] [DOI:10.1016/0028-3908(91)90008-Y]
34. Kheradmand A, Nayebi AM, Jorjani M, Haddadi R. Effect of WR-1065 on 6-hydroxydopamine-induced catalepsy and IL-6 level in rats. Iranian Journal of Basic Medical Sciences. 2016; 19(5):490-6. [PMID] [PMCID] [PMID] [PMCID]
35. Nayebi AM, Rad SR, Saberian M, Azimzadeh S, Samini M. Buspirone improves 6-hydroxydopamine-induced catalepsy through stimulation of nigral 5-HT1A receptors in rats. Pharmacological Reports. 2010; 62(2):258-64. [DOI:10.1016/S1734-1140(10)70264-4] [DOI:10.1016/S1734-1140(10)70264-4]
36. Emerich DF, Norman AB, Sanberg PR. Nicotine potentiates the behavioral effects of haloperidol. Psychopharmacology Bulletin. 1991; 27(3):385-90. [PMID] [PMID]
37. Boye SM, Clarke PB. Enhancement of haloperidol-induced catalepsy by nicotine: An investigation of possible mechanisms. Canadian Journal of Physiology and Pharmacology. 2000; 78(11):882-91. [DOI:10.1139/y00-070] [DOI:10.1139/y00-070]
38. Huang LZ, Parameswaran N, Bordia T, Michael McIntosh J, Quik M. Nicotine is neuroprotective when administered before but not after nigrostriatal damage in rats and monkeys. Journal of Neurochemistry. 2009; 109(3):826-37. [DOI:10.1111/j.1471-4159.2009.06011.x] [PMID] [PMCID] [DOI:10.1111/j.1471-4159.2009.06011.x]
39. Bordia T, Campos C, Huang L, Quik M. Continuous and intermittent nicotine treatment reduces L-3,4- Dihydroxyphenylalanine (L-DOPA)-induced dyskinesias in a rat model of Parkinson's disease. Journal of Pharmacology and Experimental Therapeutics. 2008; 327(1):239-47. [DOI:10.1124/jpet.108.140897] [PMID] [DOI:10.1124/jpet.108.140897]
40. Barrios V, González-Parra S, Arilla E. Acute nicotine administration increases somatostatin content and binding in the rat hypothalamus. Life Sciences. 1992; 51(25):1991-8. [DOI:10.1016/0024-3205(92)90116-7] [DOI:10.1016/0024-3205(92)90116-7]
41. Ono J, Yamatodani A, Kishino J, Okada S, Wada H. Cholinergic influence of K(+)-evoked release of endogenous histamine from rat hypothalamic slices in vitro. Methods and Findings in Experimental and Clinical Pharmacology. 1992; 14(1):35-40. [PMID] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA code

Send email to the article author


© 2018 All Rights Reserved | Avicenna Journal of Neuro Psycho Physiology

Designed & Developed by : Yektaweb