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Abstract

Human social conduct draws upon focal as well as global connected brain mechanisms. These flexible anatomical routes operate
in cooperation and coordination for intelligent behaviors. Cues and inputs from human social interaction are processed with ref-
erence to innate and acquired mental framework, and inference is drawn toward generation of appropriate output (response).The
focal and global connections are being characterized with functional neuroimaging technology. Brain mapping approaches have fa-
cilitated comprehensive understanding of network neurophysiology. There is increased knowledge of pollution threats to delicate
neural architecture operating the social conduct, which is a challenge to the quality of personal and social life. The most vulnera-
ble periods are early developmental stages and later during aging. Such kind of distortion is speculated as a possible basis for the
hatred held by Hitler. This article briefly introduces related neurophysiologic and neurotoxicological perspectives; moreover, the
interdisciplinary research perspectives relevant to development of preventive and corrective interventions are deliberated upon.
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1. Introduction

Brain receives and integrates signals and then appro-
priately responds as survivalist function. Complex assets
as cognition, awareness, memory, and language are sup-
ported by the brain. Responses include sexual behavior,
locomotion, and use of varied tools, and tricks. Human
brain consists of over 100 billion neurons, processing and
transmitting information as electrical signals. Structural
and functional neuronal networks affect information pro-
cessing and mental representations. Neuronal communi-
cation takes place at synapses. The plasticity of synapses
forms a basis for learning and memory in the brain. Infor-
mation in the brain is stored in form of altered structure
and chemistry of synapses involving continuous making
and unmaking of synapses (1). Precise control of molecular
and cellular mechanisms of synapse development and con-
nectivity is crucial for normal network activity and brain
function. Inappropriate loss of synaptic stability may lead
to disruption of neuronal circuits and brain disease. Un-
derstanding brain disorders is a matter of understanding
cell biological and biochemical basis of synapse function
and plasticity. Functioning of other organ systems as liver,
cardiovascular, endocrine etc. also influence the function
of the nervous system. Toxicant induced aberration in any
such organ system would reflect in a changed neurobehav-

ioral output.
Neurotoxicity of environmental chemicals is gradual

with early manifestations of mere subjective complaints,
eg, lethargy, fatigue, weakness, irritability, headache, and
depression. Intelligence, memory, emotion, and other
complex neural functions can also be affected. Low level
exposures to certain toxicants can inflict subtle functional
deficits, which may be examined by available technologies.
Alzheimer disease, Parkinson disease, and even cerebrovas-
cular lesions may be associated with ambient pollution.
The rapid rise in the environmental pollutants calls for
the availability of appropriate medical care against toxic
exposures. Toxicant heavy metals, pesticides, plasticizers,
endocrine disruptors, and variety of neurotoxicants need
timely recognition and attention. Exposure to chemicals, a
possible basis of neurobehavioral problems, must be ruled
out. Collection of clinical and epidemiological data should
be prioritized in every instance of suspected neurotoxic ex-
posure.

2. NeuronNetwork Pathophysiology

Description of neuroanatomical projection paths in
the brain white matter and acceptance of “associationis-
tic” models of cognitive function helped develop the con-
cept of network in neurology (2). A healthy brain self-
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organizes toward small world networks, characterized by
dense local connectivity and critical long distance connec-
tions formed under genetic control, which underlie cogni-
tion and intelligence. Disruption of optimal brain network
typically characterizes neurologic diseases (3).

Brain is a large complex network of interconnected el-
ements at multiple scales (4). Brain networks are disas-
sortative rather than assortative at the neuron level (5).
Brain is organized as a communication network at the cel-
lular level. Brain is organized as a social network at the
macroscopic level. A core of white matter network exists,
which densely interconnects posterior and medial corti-
cal regions (6) and association cortical hubs (7) and has
longer range of white matter connections with the rest
of the brain. Network of human brain displays opposite
patterns of mixing at different spatial scales. Functional
brain network shows evolution from more random (scat-
tered) to more small world like form (8, 9). Optimal small
world pattern of adult age is gradually replaced in older
age by more random topology again (10). A study of people
with schizophrenia showed that their grey matter network
was typified by increased physical distance or inefficient
wiring between connected nodes. The hierarchical orga-
nization of the cortex is attenuated, indicating abnormal
neurodevelopment (11).

Findings suggest that structural and functional net-
works are heritable and change with normal aging. Abnor-
mal network function associates clinical disorders. Net-
work carries a persistent or long memory component (12),
but quickly adjusts to behavioural changes or cognitive de-
mands (13). Brain networks are dynamically in critical state
on the edge of chaos, which facilitates rapid reconfigura-
tion in response to altered inputs (14).

Interregional synchronization or effective connectiv-
ity characterizes healthy brain functioning. Strength of
interregional synchronization depends on age. Long dis-
tance synchronization is relatively low at birth, but it in-
creases during development with maturation and myeli-
nation of long distance association pathways. The strength
of synchronization between different brain regions fluctu-
ates due to rapid formation and dissolution of functional
connections. Brain networks apparently represent solu-
tions to yet unclearly defined problems of neurophysiol-
ogy.

The new network associated with attention demand-
ing tasks is called task related network. The network op-
erating stimulus independent thought at rest is called de-
fault network. The 2 networks are negatively correlated
(anticorrelated). Anticorrelated networks are complemen-
tary ways of understanding, self- monitoring, and task per-
formance. The default mode is defined as baseline condi-
tion of the brain function. The magnitude of default net-

work connectivity correlates with psychopathology. Hy-
peractivation (reduced task related suppression) of default
regions and hyperconnectivity of default network cause
thought disorder and increased risk of illness.

Creatures with complex social organization and self-
consciousness, posses Von Economo Neurons (VEN) in
anterior cingulate, fronto insular, and dorsolateral pre-
frontal cortex, which are home to executive functions.
These neurons are latest to evolve, and hence lack genet-
ically fostered defence against stress. They are most sus-
ceptible to oxidative damage (15). VENs are instrumental in
switching between the default mode resting state and task
related attention and executive networks. Network switch-
ing is disturbed in neuropsychiatric disorders (16). Most
such disorders are linked to neuroinflammation and glu-
tathione depletion. Anything that calms the inflammation
in VENs will help normalize network transformations, free
the VENs to process higher nervous functions and reduce
progression of many neurocognitive disorders.

Understanding of the pathogenesis of human disor-
ders associated with axonal or synaptic lesions requires the
understanding of synaptic neurobiology (17). Several bio-
chemical steps of synaptic transmission eg, calcium sig-
nal, glutamatergic, and NO dependent mechanisms were
shown to be altered upon exposure to ubiquitous pollu-
tant bisphenol-A via mediation of non- classical estrogen
receptors (18-21). Direct in vitro neural effects of bisphenol-
A may indicate a wider impact on synapse physiology and
neuron network function and its consequences to health
(22, 23). Additional effects on synaptogenesis regulated by
genes products and epigenetic factors need understand-
ing of the pathogenesis of conditions in which morphol-
ogy appears normal, but with functional disorder (24).

3. Social Cognition

Social cognition is exemplified as we look at somebody
and speculate on his/her intentions/action agenda. This
does not happen when one looks at inanimate objects. So-
cial cognition implies the processing of information about
and directed toward other people. Cognitive processing in-
cludes perception, reasoning, memory, attention, motiva-
tion, and decision- making that underlies social function-
ing. Social functioning is a broader concept than social be-
havior. It refers to long- term contextualized ability of an
individual to interact with others.

Specialized brain cells called mirror neurons moder-
ate our observations and interpretations of other peo-
ple actions to speculate about their intentions. The later
serves the inputs that govern our reaction/ response (25,
26). Dysfunction of the mirror neurons is associated with
autism spectrum disorder (ASD). Afflicted individuals lack
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the knowledge for appropriately interacting with other
people and lack the ability to empathize (share thoughts
and feelings) and imitate. Typically, they fail to make eye
contact, which is vital for interaction. Mirror neurons pro-
vide understanding of the actions, thoughts, and emo-
tions in others through an ability to see actions and be-
havior of others as conveying the following message: like
me. The mental simulation allows the observer to under-
stand another person’s behaviors and feelings, or to have
a theory of mind, which the autistic child lacks. The mir-
ror neuron dysfunction implies pathophysiological role of
various neurochemicals. There is manifest loss of Purkinje
cells and associated physiologic dysfunction (27).

Psychiatric disorders involve difficulties in social func-
tioning that result in further changes in the brain and cog-
nition (28). Stress of alienation in city life involves specific
changes in regional brain activation and increases risk of
schizophrenia (29, 30). Social cognition is implemented
by social brain networks and the cognition causes social
behavior. Social cognition is highly context dependant, in-
volving critical depths of abstraction, inference, and coun-
terfactual thinking. Extended tuning with particular so-
cial context and culture during development is needed for
social cognition. Social cognition is highly variable and
communal in nature. Thus, to an extent, social function-
ing can be compensated by behavior of others in a sup-
portive environment. The network function generally de-
pends on rapid, efficient, and interactive processing. Even
mild dysfunction in any structural component can result
in network impairment. The wider spread of brain compo-
nents/regions involved in social cognition makes it vulner-
able to damage. Compensation through unaffected com-
ponents of network can help in recovery.

Sharing a focus of attention with other individuals
bestows socially learned and exercised skills such as lan-
guage. Autism is a state of severe social disconnect. Autis-
tic children are deficient in attention sharing ability and
consequent learning. They cannot focus their attention on
the same object to grasp their own perspectives and those
of others. The disability for joint attention is the result of
mirror neuron dysfunction.

4. Organic Brain Disease and Social Cognition

Social behavior is learnt through a prolonged period of
development amid social context. Social impairments are
seen after damage to prefrontal cortex or amygdala. Most
severe impairments happen when damage occurs during
early development (31-33). Bilateral damage causes more
profound social impairments because the homologous
structure is unable to compensate for damage. Ventrome-
dial prefrontal cortex is necessary for acquisition and stor-

age of associations between stimuli and their value (34), es-
pecially the value related to social emotions (35, 36). Stud-
ies of lesions in prefrontal cortex and amygdala have re-
vealed the role of emotions in social cognition that moti-
vate and guide complex social behaviours (37).

Neuropsychiatric disorders may be understood in the
context of anatomically distributed networks comprising
several structures. They also feature a prospect for com-
pensation in the event of single structure damage. Damage
to connecting white matter can also compromise network
integrity and function (38, 39). The consequences are more
severe when more medial structures accrue lesion than le-
sions of lateral structures (40).

5. Psychiatric Diseases and Social Cognition

Autism spectrum disorders (ASD) are a collection of
neurodevelopmental disorders (41). Many people with ASD
have above average IQ, yet have severe difficulties in so-
cial interaction due to disorder of brain connectivity (41,
42). Several studies have shown abnormal connectivity
precisely between the components of social brain (43, 44).
Williams syndrome (WS) is opposite social phenotype of
autism and afflicted patients’ approach to strangers. ASD
victims in contrast avoid strangers (45, 46). WS patients ab-
normally rate faces as trustworthy, while ASD patients do
not (47). Such phenomena provide evidence that represen-
tation of other peoples’ mental states and recognition of
their faces may be 2 distinct and dissociate processes (48).

6. Environmental Challenge to Social Cognition

Many novel disorders have emerged over the last cen-
tury in parallel with rise of manufactured chemicals and
drugs (over 3000 numbers), electromagnetic fields, and
widespread application of diverse technologies. Chemi-
cals at levels below safety thresholds can act by mimicking
hormones and other signaling and regulating molecules
(49). Combined toxic exposures impact in unique fashions
over the years. They can adversely affect fetal neuronal cir-
cuits at critical stages of development. Excess oxygen rad-
ical generation, impaired synthesis, and enhanced degra-
dation of long chain fatty acids, which are promoted by
many pollutants, compromise cognitive function. Many
pollutants impair synthesis and function of thyroid and
gonadal steroid hormones with adverse consequence to
cognitive function.

Persistent organic pollutants cause neuroinflamma-
tion and are associated with chronic diseases as obesity,
diabetes, and atherosclerosis. The modern lifestyle dis-
eases, eg, obesity, diabetes etc. increase the risk of de-
mentia (50). Diabetes may increase neuronal damage by
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increasing oxidative stress and advanced glycation end
products, reduced acetyl choline synthesis due to defective
glucose availability, and insulin effects on amyloid-beta
metabolism, and vascular pathology (51, 52). Inflamma-
tory disruption of insulin signaling in the brain may con-
tribute to abnormalities that are commonly observed in
Alzheimer disease, eg, impaired glucose metabolism and
acetyl choline synthesis. In uninjured brain, pro- and anti-
inflammatory cytokines are expressed at low basal levels.
They serve an essential physiological role in the regulation
of bidirectional glioneuronal communication and in mod-
ulation of synaptic plasticity (53-55). The final downstream
effect of cytokines on plasticity and neuronal survival de-
pends on their synaptic concentration. At low physiolog-
ical levels, these immune mediators may be essential for
the induction and maintenance of neuroplasticity. They
are over expressed during neuroinflammation, when they
may impair synaptic plasticity and cause neurodegener-
ation. Net synaptic and neuronal effect of cytokines de-
pends on the synaptic balance of pro- and anti- inflamma-
tory molecules. Pollutants trigger inflammation, cytokine
production, and activation of microglia, with secretion of
added set of cytokines. Exposure to air pollution results in
occurrence of brain inflammation at early age and accom-
panies early cognitive impairment.

7. Environmental Impacts on Social Brain Structures

Combined chemical influences can be infinite and vul-
nerability of exposed individuals may vary. Identifica-
tion of culprit chemicals in affected individuals to devise
unique treatment strategies against resultant disorder like
autism is a major indispensable challenge. Mirror neu-
ron dysfunction concept helps narrow down the investi-
gation of what may have caused dysfunction at biochemi-
cal level. The concept also facilitates coherent understand-
ing of the imbalances caused in brain function vis-a-vis de-
tected invasive chemicals and their quantity in tissue and
body fluid.

Normal functioning of cerebellum is most critical dur-
ing early stages of development; and performance re-
quires deliberate thought facilitated by cerebellar activ-
ity before the associative learning occurs and specific neu-
ral connections are established to allow automatic perfor-
mances (56). Neuronal dysfunction within cerebellum in-
cluding Purkinje cells occurs in early development of an
autistic individual (57). In the cerebellum, Purkinje cells
are exceptionally large inhibitory neurons, which receive
profuse inputs (over 200,000 connections) from parallel
and climbing fibres; this makes these cells particularly sen-
sitive and also selectively vulnerable to changes in the en-
vironment. Purkinje cell loss in the cerebellum is one of

the most consistent neurological abnormalities found in
autistic individuals. The postnatal period involves synapse
formation and processes of network development, which
is defective in autism. Mirror neurons may be affected by
improper connectivity or wiring problems in the brain and
serve an example to prove that dysfunction of any one par-
ticular neuronal group may contribute to symptoms of
autism.

Acquisition of new social skills requires the construc-
tion of new neuronal structures with sufficient plastic-
ity for synaptic rearrangements. Amygdala is a cerebral
region involved in emotional integration of daily experi-
ences and is closely associated with hippocampus. Active
neurogenesis in amygdala and hypothalamus is known to
occur in adults, who are integrated with emotional pro-
cess. Toxic substances can directly or indirectly affect neu-
rons altering function of the natural neurotransmitters,
growth factors, and hormones. Toxicants may deregu-
late neurogenesis, neuronal differentiation, axon myelina-
tion, and synaptogenesis. Disruption of neurogenesis in
amygdale contributes to autism. Decrease of gray matter
and under connectivity in prefrontal motor cortex bearing
mirror neuron system as well as malformation of neural
networks in other cortical areas impairs empathy(shared
thinking) (58).

8. Compensation and Recovery: The Network View of
the Social Brain

Network concept is being widely applied in study of
neurological and psychiatric disorders (23, 59, 60) and rep-
resents the shift of emphasis from specific brain regions
to specific brain networks. Considerable advances have
been made in defining components of functional brain
networks. Resting state functional neuroimaging is used
to identify networks that are activated during the perfor-
mance of specific social tasks (61, 62). Social neuroscience
research is focused on defining subcomponents of the de-
fault mode network (63). Abnormal individual compo-
nents of default mode networks have been implicated in
many psychiatric and neurologic illnesses (16, 23, 64). Dis-
ordered network is a pattern that has been observed in dif-
ferent types of brain diseases, ranging from Alzheimer dis-
ease, brain tumors, and depression to schizophrenia (65-
67). Network randomization (disorganization) character-
izes advanced brain disease. In other conditions, brain net-
works shift from global to local connectivity. In develop-
mental disorders (68) and in early stages of neuropsychi-
atric disease (69, 70), there is pathological increase in net-
work regularity.
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9. Clinical Perspectives

Environmental pollutants, chemicals, metals, and
drugs have a negative impact on developing central ner-
vous system. The cognitive deficits result from reduced
brain connectivity (71-73) in heavily exposed children. The
deficits correlate the localization of the substantive white
matter changes in parietal and temporal lobe with im-
paired functions (74). Childhood and adolescence are
crucial periods of brain development associated with dy-
namic behavioral, cognitive, and emotional changes. If
cognitive abilities are reduced during the critical develop-
mental yeas, detrimental consequences to the society are
enormous.

Compensation mechanisms through centralateral ho-
mologue structures as well as through top down strate-
gies such as lateralized activation and recruitment of pre-
frontal regions should be further studied and understood.
These mechanisms may also explain greater dependency
on prefrontal region with less lateralized brain activation
in normal aging (75, 76). Across the neuropsychiatric disor-
ders, ranging from frontal lobe damage (77) to amygdale
lesions (78), autism (79), and Williams syndrome (80), so-
cial behavior could be disproportionately affected relative
to nonsocial behavior. Knowledge of the relationship be-
tween specific brain region/s and specific brain function/s
helps understand such disorders. Knowing which brain
networks are activated during a particular task (and genes
associated with particular process) is very useful in this re-
spect.

10. Research Perspectives

Functional neuroimaging technology (eg, fMRI) helps
identify regions involved in or sufficient for a particular
function in a healthy brain. The lesioning studies reveal
which nodes of the network are necessary for a function.
Protracted changes in one brain region affect the structure
of other functionally or anatomically connected brain re-
gions with distal effects in peripheral as well as the central
nervous system (81). Research in to social dysfunction as-
sociating neurological and psychiatric disorders should fo-
cus on the core structures that constitute the social brain
and their connectivity. Continuous additions to list of
such structures and networks would refine the definition
of neural basis of social cognition

Mental disorders have environmental etiologies, and
there is heterogeneity in response to them among the
exposed people (82). Gene-environment interaction ap-
proach assumes that a disorder occurs due to environ-
mental agent and the genes influence the susceptibility

to the agents. Genotypic susceptibility to pollutant in-
duced neurotoxicity is exemplified in ApoE deficiency and
other types of susceptibilities to oxidant stress (83). Pollu-
tion can impact gene expression through variety of mech-
anisms. Epigenetic effects lead to imprinting, gene silenc-
ing, and suppression of expression (84, 85). Epigenetic
mechanisms of pollutant mediated neurological damage
have been demonstrated (86).

Genotype interaction with environmental exposure
may create phenotype with typical neurophysiological,
biochemical, endocrinological, neuroanatomical, cogni-
tive, emotional, or neuropsychological measures. The later
have been examined with functional neuroimaging (87)
and assessed indirectly by EEG, electrodermal and heart
rate reactivity, and hormonal responses. States of pro-
tein, calorie, vitamin and/or mineral undernutrition are
associated with a range of neurodevelopmental, neuro-
logical, and psychiatric disorders involving both central
and peripheral nervous system. Undernutrition can mod-
ify the risk of chemical induced neurologic disease and
may even be a prerequisite for manifestation of neurotox-
icity (88-90). Epidemiological cohort studies should col-
lect neurophysiologic measurements of individual differ-
ences, which should help the integration of epidemiologi-
cal and experimental research observations (91).

Risk assessment technology should identify and assess
progressive and cumulative neurotoxicity of mixed pollu-
tants that may selectively affect different regions of the
brain as per gender and age (92). The multi-hit hypoth-
esis of neurotoxicity assumes that the brain may readily
compensate for an insult caused by a singular agent on
the finite target system within it. However, when multi-
ple targets or functional sites within a single system are
attacked by different mechanisms (eg, by multiple agents
and/or multiple risk factors), the limited homeostatic ca-
pabilities of the brain are overwhelmed and sustained,
or cumulative damage accrues as consequence (93). A
prospective mother- child cohort following the partici-
pants since prenatal period until adulthood could facili-
tate the relating data from neurotoxic exposure to infor-
mation on behavioural development throughout life with
particular focus on disconnecting behaviors. Significance
of differences in dose, time, and length of exposure as well
as critical windows need to be determined in neurotoxic
exposure, especially during early development. Human
developmental neurotoxicity can be delineated better by
databases that continuously integrate any exposure data
and report toxicity testings.

To enhance and maintain normal synaptic connectiv-
ity, effective treatment should provide both trophic and
neurochemical support. Optimal functioning of cortical
circuits for effective network function may then be rein-
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stated by proper chemical signaling. Relevant drugs cur-
rently available for regulating plasticity include inhibitors
of glutamate release, NMDA antagonists, cAMP phospho-
diesterase inhibitors, and glucocorticosteroid receptor an-
tagonists, etc.
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